Skip to main content

My wish list for Beginning Puppet

A few months ago a question in the very useful 'ask puppet' site attracted my attention. The authors of Beginning Puppet were asking for feedback about the desired content.

Since my answer has had some success, I'd like to report it here:

These are the things I would have liked to see as soon as I started experimenting with Puppet (in no specific order - this is mainly a brain dump):
  • What's a catalogue and how Puppet builds it
  • Recommended file structure for Puppet manifests
  • How to divide your infrastructure in environments
  • A clear indication that Puppet doesn't guarantee an "order of execution", and how to define dependencies between resources and classes (i.e. the "arrow" syntax to ensure that a class is always applied before/after another one).
  • Before ever writing a module, how to test it (and as a consequence, Continuous Integration for Puppet modules)
  • How to publish a module on github or puppetforge
  • A "build-up example" throughout the book. In other words, start building a module at the beginning, and keep adding elements as topics are discussed. For example, an apache module: start with making sure the apache package and its pre-requirements are installed, then add a file, then a template, then prepare the module for different environments, different OSs, etc.
  • Best practices for separating the module logic from the data, i.e. how to ensure that modules can be reused on different platforms/environments/OSs just with proper variable settings and without changes to the module logic.
  • Whether the hiera approach is recommended or not, and how to design a module with that in mind.
  • Best practices for dividing modules in classes
  • Variables scope, and best practices for variable names
  • Best practices for indentation, single/double quoting, module documentation
  • How to run Puppet in standalone/agent mode (so that the manifests can be verified easily locally)
  • Where Puppet looks for modules - how to install and use a 3rd party module
  • Common security problems
  • Load testing (e.g. with Gatling)
  • Continuous Integration (managing your modules with Jenkins or similar)
  • The 'facter' and what 'facts' are available and commonly used

Popular posts from this blog

Troubleshooting TURN

  WebRTC applications use the ICE negotiation to discovery the best way to communicate with a remote party. I t dynamically finds a pair of candidates (IP address, port and transport, also known as “transport address”) suitable for exchanging media and data. The most important aspect of this is “dynamically”: a local and a remote transport address are found based on the network conditions at the time of establishing a session. For example, a WebRTC client that normally uses a server reflexive transport address to communicate with an SFU. when running inside the home office, may use a relay transport address over TCP when running inside an office network which limits remote UDP targets. The same configuration (defined as “iceServers” when creating an RTCPeerConnection will work in both cases, producing different outcomes.

Extracting RTP streams from network captures

I needed an efficient way to programmatically extract RTP streams from a network capture. In addition I wanted to: save each stream into a separate pcap file. extract SRTP-negotiated keys if present and available in the trace, associating them to the related RTP (or SRTP if the negotiation succeeded) stream. Some caveats: In normal conditions the negotiation of SRTP sessions happens via a secure transport, typically SIP over TLS, so the exchanged crypto information may not be available from a simple network capture. There are ways to extract RTP streams using Wireshark or tcpdump; it’s not necessary to do it programmatically. All this said I wrote a small tool ( https://github.com/giavac/pcap_tool ) that parses a network capture and tries to interpret each packet as either RTP/SRTP or SIP, and does two main things: save each detected RTP/SRTP stream into a dedicated pcap file, which name contains the related SSRC. print a summary of the crypto information exchanged, if available. With ...

Testing SIP platforms and pjsip

There are various levels of testing, from unit to component, from integration to end-to-end, not to mention performance testing and fuzzing. When developing or maintaining Real Time Communications (RTC or VoIP) systems,  all these levels (with the exclusion maybe of unit testing) are made easier by applications explicitly designed for this, like sipp . sipp has a deep focus on performance testing, or using a simpler term, load testing. Some of its features allow to fine tune properties like call rate, call duration, simulate packet loss, ramp up traffic, etc. In practical terms though once you have the flexibility to generate SIP signalling to negotiate sessions and RTP streams, you can use sipp for functional testing too. sipp can act as an entity generating a call, or receiving a call, which makes it suitable to surround the system under test and simulate its interactions with the real world. What sipp does can be generalised: we want to be able to simulate the real world tha...