Skip to main content

VoIP calls encoded with SILK: from RTP to WAV, update

Three and a half years ago (which really sounds like a lot of time!) I was working with a VoIP infrastructure using SILK. As it often happens to server-side developers/integrators, you have to prove whether the audio provided by a client or to a client is correctly encoded :-)

Wireshark is able to decode, and play, G.711 streams, but not SILK (or Opus - more on this later). So I thought of having my own tool handy, to generate a WAV file for a PCAP with RTP carrying SILK frames.

The first part requires extracting the SILK payload and writing it down into a bistream file. Then you have to decode the audio using the SILK SDK decoder, to get a raw audio file. From there to a WAV file it is very easy.

As I tried to describe in this previous post, I had to reverse engineer the test files contained in the SDK, to see what a SILK file looked like.

Since the SILK payload is not constant, all that was needed was to insert 2 Bytes with the length of the following SILK frame. At the beginning of the file you have to add a header containing "#!SILK_V3", and voilà.

This is accomplished by silk_rtp_to_bistream.c (from https://github.com/giavac/silk_rtp_to_bitstream), a small program based on libpcap that extracts the SILK payload from a PCAP and writes it properly into a bistream file.

Build the binary with:

gcc silk_rtp_to_bitstream.c -lpcap -o silk_rtp_to_bitstream

(you'll need libpcap-dev installed)

Create the bistream with:

./silk_rtp_to_bitstream input.pcap silk.bit

Now you can decode, using the SILK SDK, from bitstream into raw audio with:

$SILK_SDK/decoder silk.bit silk.raw

Raw audio to WAV can be done with sox:

sox -V -t raw -b 16 -e signed-integer -r 24000 silk.raw silk.wav

This works fine with single channel SILK at 8000 Hz.


More to come: an update on how to accomplish the same but for Opus.


Popular posts from this blog

Troubleshooting TURN

  WebRTC applications use the ICE negotiation to discovery the best way to communicate with a remote party. I t dynamically finds a pair of candidates (IP address, port and transport, also known as “transport address”) suitable for exchanging media and data. The most important aspect of this is “dynamically”: a local and a remote transport address are found based on the network conditions at the time of establishing a session. For example, a WebRTC client that normally uses a server reflexive transport address to communicate with an SFU. when running inside the home office, may use a relay transport address over TCP when running inside an office network which limits remote UDP targets. The same configuration (defined as “iceServers” when creating an RTCPeerConnection will work in both cases, producing different outcomes.

Extracting RTP streams from network captures

I needed an efficient way to programmatically extract RTP streams from a network capture. In addition I wanted to: save each stream into a separate pcap file. extract SRTP-negotiated keys if present and available in the trace, associating them to the related RTP (or SRTP if the negotiation succeeded) stream. Some caveats: In normal conditions the negotiation of SRTP sessions happens via a secure transport, typically SIP over TLS, so the exchanged crypto information may not be available from a simple network capture. There are ways to extract RTP streams using Wireshark or tcpdump; it’s not necessary to do it programmatically. All this said I wrote a small tool ( https://github.com/giavac/pcap_tool ) that parses a network capture and tries to interpret each packet as either RTP/SRTP or SIP, and does two main things: save each detected RTP/SRTP stream into a dedicated pcap file, which name contains the related SSRC. print a summary of the crypto information exchanged, if available. With ...

Testing SIP platforms and pjsip

There are various levels of testing, from unit to component, from integration to end-to-end, not to mention performance testing and fuzzing. When developing or maintaining Real Time Communications (RTC or VoIP) systems,  all these levels (with the exclusion maybe of unit testing) are made easier by applications explicitly designed for this, like sipp . sipp has a deep focus on performance testing, or using a simpler term, load testing. Some of its features allow to fine tune properties like call rate, call duration, simulate packet loss, ramp up traffic, etc. In practical terms though once you have the flexibility to generate SIP signalling to negotiate sessions and RTP streams, you can use sipp for functional testing too. sipp can act as an entity generating a call, or receiving a call, which makes it suitable to surround the system under test and simulate its interactions with the real world. What sipp does can be generalised: we want to be able to simulate the real world tha...