Skip to main content

The interesting case of Lua in RTC world

An interesting pattern that caught my attention is the role that Lua is gaining in the RTC (Real-Time Communications) world.

Lua is a small-footprint programming language, powerful while keeping a simple syntax.

I’ve been using Lua to script dialplan actions for FreeSWITCH since about 2014. It has provided me with a way to define relatively complex logic and speed up the definition of FS’ behaviour.

Delegating this type of logic to a scripting language had several advantages, such as:
  • It’s easier to read and understand than native dialplans or native routing logic.
  • Makes unit testing of the dialplan possible/easier.
  • Allows changing some pieces of logic easily, in many cases preventing expensive reload of modules or restart of applications.

I’ve been using Lua for Kamailio as well. Kamailio is an open source programmable SIP Proxy. In a specific case, some bits of the routing logic required regex processing and was expecting to change often: an ideal case for an external script to do that work.
When the logic changes, it’s sufficient to instruct Kamailio to reload the script, and from that moment on the new requests being processed will use the new logic.

Recent versions of Kamailio though add a framework called KEMI. This opens up new possibilities, and also provides support for many other scripting languages, python being the most popular, JS, Squirrel. Still, Lua appears to provide the fastest implementations (with no observable performance degradation) while others have limitations. Python, as you can imagine, provides a rich set of functions and libraries, but it’s not as performant and the reload mechanism currently has some issues.

Wireshark, a tool to capture and analyse network activity, exposes a useful API for Lua. You can use the API to define your own Wireshark dissector (which you’ll need to install as a plugin). This has performance limitations in comparison with dissectors written in C - and so it’s recommended for prototyping only - but still can solve your problem perfectly. Out of need, I wrote a Wireshark dissector for HEP, a binary protocol used in the Homer environment. Homer is an open source framework for the monitoring and analysis of Real-Time Communications.

Last weekend a new interesting case was presented by Lorenzo Miniero at FOSDEM. The target application was Janus, an open source framework to build WebRTC gateways.

Janus allows to build applications by defining the transport and business logic as plugins, on top of the core that implements the WebRTC stack.
It’s written in C and so far users needed to write plugins with that language. The Janus developers have introduced the possibility to write plugins in Lua.

In his presentation Lorenzo explains also in detail what approach is best to use for a Real-Time application to interact with single threaded language like Lua in an asynchronous context.

Just a funny note: Lua uses a double dash for commenting out a line: '--'. Be careful when you watch diffs in a terminal because a removed comment will start with '- --‘ and may not the easiest thing to interpret (experiences may vary depending on the terminal, of course!).



Popular posts from this blog

Troubleshooting TURN

  WebRTC applications use the ICE negotiation to discovery the best way to communicate with a remote party. I t dynamically finds a pair of candidates (IP address, port and transport, also known as “transport address”) suitable for exchanging media and data. The most important aspect of this is “dynamically”: a local and a remote transport address are found based on the network conditions at the time of establishing a session. For example, a WebRTC client that normally uses a server reflexive transport address to communicate with an SFU. when running inside the home office, may use a relay transport address over TCP when running inside an office network which limits remote UDP targets. The same configuration (defined as “iceServers” when creating an RTCPeerConnection will work in both cases, producing different outcomes.

Extracting RTP streams from network captures

I needed an efficient way to programmatically extract RTP streams from a network capture. In addition I wanted to: save each stream into a separate pcap file. extract SRTP-negotiated keys if present and available in the trace, associating them to the related RTP (or SRTP if the negotiation succeeded) stream. Some caveats: In normal conditions the negotiation of SRTP sessions happens via a secure transport, typically SIP over TLS, so the exchanged crypto information may not be available from a simple network capture. There are ways to extract RTP streams using Wireshark or tcpdump; it’s not necessary to do it programmatically. All this said I wrote a small tool ( https://github.com/giavac/pcap_tool ) that parses a network capture and tries to interpret each packet as either RTP/SRTP or SIP, and does two main things: save each detected RTP/SRTP stream into a dedicated pcap file, which name contains the related SSRC. print a summary of the crypto information exchanged, if available. With ...

Testing SIP platforms and pjsip

There are various levels of testing, from unit to component, from integration to end-to-end, not to mention performance testing and fuzzing. When developing or maintaining Real Time Communications (RTC or VoIP) systems,  all these levels (with the exclusion maybe of unit testing) are made easier by applications explicitly designed for this, like sipp . sipp has a deep focus on performance testing, or using a simpler term, load testing. Some of its features allow to fine tune properties like call rate, call duration, simulate packet loss, ramp up traffic, etc. In practical terms though once you have the flexibility to generate SIP signalling to negotiate sessions and RTP streams, you can use sipp for functional testing too. sipp can act as an entity generating a call, or receiving a call, which makes it suitable to surround the system under test and simulate its interactions with the real world. What sipp does can be generalised: we want to be able to simulate the real world tha...